22,498 research outputs found

    Heuristic Classification of Physical Theories based on Quantum Correlations

    Full text link
    Taking quantum formalism as a point of reference and connection, we explore the various possibilities that arise in the construction of physical theories. Analyzing the distinct physical phenomena that each of them may describe, we introduce the different types of hidden variables theories that correspond to these physical phenomena. A hierarchical classification of the offered theories, based on the degree of correlation between dichotomic observables in bipartite systems, as quantified by a Bell type inequality, is finally proposed.Comment: 13 pages, 2 figure

    KIC 9821622: An interesting lithium-rich giant in the Kepler field

    Get PDF
    We report the discovery of a new exceptional young lithium-rich giant, KIC 9821622, in the \textit{Kepler} field that exhibits an unusually large enhancement of α\alpha, Fe-peak, and \textit{r}-process elements. From high-resolution spectra obtained with GRACES at Gemini North, we derived fundamental parameters and detailed chemical abundances of 23 elements from equivalent widths and synthesis analysis. By combining atmospheric stellar parameters with available asteroseismic data, we obtained the stellar mass, radius, and age. The data analysis reveals that KIC 9821622 is a Li-rich (A(Li)NLTE_{NLTE} = 1.80 ±\pm 0.2) intermediate-mass giant star (MM = 1.64 M⊙M_{\odot}) located at the red giant branch near the luminosity bump. We find unexpectedly elevated abundances of Fe-peak and \textit{r}-process elements. In addition, as previously reported, we find that this is a young star (2.37 Gyr) with unusually high abundances of α\alpha-elements ([α\alpha/Fe] = 0.31). The evolutionary status of KIC 9821622 suggests that its Li-rich nature is the result of internal fresh Li that is synthesized through the Cameron-Fowler mechanism near the luminosity bump. However, its peculiar enhancement of α\alpha, Fe-peak, and \textit{r}-process elements opens the possibility of external contamination by material enriched by a supernova explosion. Although it is less likely, planet accretion cannot be ruled out.Comment: Letter, 6 pages, 3 figures, Accepted for publication in A&A. - Some language editing include

    Viscoelastic vibration damping identification methods. Application to laminated glass.

    Get PDF
    Laminatedglass is composed of two glass layers and a thin intermediate PVB layer, strongly influencing PVB's viscoelastic behaviour its dynamic response. While natural frequencies are relatively easily identified even with simplified FE models, damping ratios are not identified with such an ease. In order to determine to what extent external factors influence dampingidentification, different tests have been carried out. The external factors considered, apart from temperature, are accelerometers, connection cables and the effect of the glass layers. To analyse the influence of the accelerometers and their connection cables a laser measuring device was employed considering three possibilities: sample without instrumentation, sample with the accelerometers fixed and sample completely instrumented. When the sample is completely instrumented, accelerometer readings are also analysed. To take into consideration the effect of the glass layers, tests were realised both for laminatedglass and monolithic samples. This paper presents in depth data analysis of the different configurations and establishes criteria for data acquisition when testing laminatedglass

    Thermal van der Waals Interaction between Graphene Layers

    Full text link
    The van de Waals interaction between two graphene sheets is studied at finite temperatures. Graphene's thermal length (ξT=ℏv/kBT)(\xi_T = \hbar v / k_B T) controls the force versus distance (z)(z) as a crossover from the zero temperature results for z≪ξTz\ll \xi_T, to a linear-in-temperature, universal regime for z≫ξTz\gg \xi_T. The large separation regime is shown to be a consequence of the classical behavior of graphene's plasmons at finite temperature. Retardation effects are largely irrelevant, both in the zero and finite temperature regimes. Thermal effects should be noticeable in the van de Waals interaction already for distances of tens of nanometers at room temperature.Comment: enlarged version, 9 pages, 4 figures, updated reference
    • …
    corecore